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Nomenclature
a = equatorial radius of the planet, m
b = polar radius of the planet, m

= section of the planet’s surface by a plane
containing the polar axis and X

C( a ) = point on with geodetic latitude a
e = eccentricity of the planet, e =

p
(1 ¡ r 2)

(dimensionless)
H ( a ) = distance from X to C( a ), m
h = geodetic altitude of X, m
N = outward unit normal vector at P
O = center of the oblate spheroidal planet
P = intersection of the planet’s surface and the line

through O and X
Q = intersection of the planet’s equator and the line

through P and X
X = point in space whose geodetic coordinates

are to be computed
(x , y, z) = Cartesian (geocentric) coordinates of X, m
b e( a ) = auxiliary function,

p
{1 ¡ e2[sin( a )]2}

(dimensionless)
h ( a ) = angle between C 0 ( a ) and C( a ) ¡ X, deg
j = contraction constant (dimensionless)
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k = geodetic latitude of X, deg
l = geocentric latitude of X, that is, polar angle

of the Cartesian point ( q , z), deg
q = polar radius of the Cartesian point (x , y),p

(x2 + y2), m
r = ratio of the polar and equatorial radii, r =b/ a

(dimensionless)
u = geodetic latitude of P, deg
} = longitude of X, that is, polar angle of the

Cartesian point (x, y), deg

Subscripts

d = negative altitudes (deep), h < 0
h = high altitudes (high), a r 2 / b e( k ) < h
` = low altitudes (low), 0 · h ·a r 2 / b e( k )
0, 1, n, n + 1 = number of iterations

Introduction

T HIS Note presents a provably accurate algorithm to compute
the geodetic latitude and geodetic altitude of a point in space

relative to an oblate spheroid (a planet), given the geocentric posi-
tion of the point relative to the spheroid. This computation is often
necessary for navigation and tracking of aircraft, space vehicles,
or other objects. The measurements yield the geocentric Cartesian
coordinates (x , y, z) of the target X:

X =

³
q

z

´
=

(
[a / b e( k ) + h] cos( k )£
a r 2 ê b e( k ) + h

¤
sin( k )

)
(1)

Equation (1) relates the cylindrical coordinates ( q , z) to the geode-
tic coordinates ( k , h) (Ref. 1) (Fig. 1). The problem consists of
computing the target’s geodetic altitute h and geodetic latitude k
given x , y, z. This problem can be solved in closed form (contrary
to Deprit and Deprit-Bartholome2) because it reduces to solving a
quartic equation. However, a closed-form algebraic solution of the
quartic equation is impractical for numericalcomputationsfor three
reasons. First, it requires the computation of a complex cube root,
which itself involvesa numerical approximation.Second, algebraic
solutionscontain subtractionsthat can result in catastrophiccancel-
lations of signi� cant digits. Finally, because of the complexity of
the algebraic solutions, no practical upper bounds on the effects of
rounding errors, over� ow, and under� ow appear to exist. The lit-
erature contains various numerical approximationsfor the geodetic
coordinates,3 but apparentlydoes notprovideboundson theerrors in
the presence of � oating-pointarithmetic or other perturbations,nor
bounds on the number of iterations necessary to achieve a speci� ed
accuracy.In one instance, an algorithm4 publishedin this journal at-
tempts a divisionby zero above the poles and near the poles calls for
divisions by small numbers that would amplify previous rounding
or measurement errors.

In contrast, the algorithmpresentedhere begins with a geocentric
approximation and re� nes it through one iteration of a contract-
ing map. The method is accurate to two-millionths of a degree for

Fig. 1 Problem: given ½ and z for X, compute h and ¸.
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the geodetic latitude and 1 mm for the geodetic altitude. Further
iterations would yield still greater accuracy.

Earth Geodetic Coordinates of Close Objects
The main algorithmis for Earth and for satelliteswhose orbits are

at an altitude of the order of one Earth polar radius or less. Because
h is unknown, the inequalities 0 ·h ·b cannot be tested, but the
quantity a r 2 b e( k ) is approximately the polar radius b. Moreover,
0 ·h ·a r 2 b e( k ) is algebraically equivalent to

( q /a)2 + (z /b)2 ¸ 1 ¸ {q 2 / [(1 + r 2)a]2} + z2 /4b2 (2)

which can be calculated and tested from the data. The three-step
algorithm comprises a single pass of an iterative method. At each
pass the method computes an altitude estimate, estimates of the
cosine and sine of latitude, and an intermediate quantity b e( k ). The
inputs are the geocentric coordinates (x , y, z) of X.

Three-Step Algorithm

Step 1
Set n =0. Compute q =

p
(x2 + y2) and the initial altitude esti-

mate:

h0 =
h
1 ¡ 1 ê

p
( q / a)2 + (z / b)2

ip
q 2 + z2 (3)

Step 2
Compute the cosine, u0 = cos( u ), and sine, v0 = sin( u ), of the

initial latitude estimate k 0 = u and the initial value w0 of b e( k 0):

u0 =
r 2 qp

r 4 q 2 + z2
, v0 =

zp
r 4 q 2 + z2

, w0 =
p

1 ¡ e2v2
0

(4)

Step 3
Compute the cosine, un + 1 , and sine, vn + 1, of the improved lat-

itude estimate k n + 1 , the corresponding value wn + 1 of b e , and the
improved altitude estimate hn + 1:

un + 1 =

£
a r 2 + hnwn

¤
q

q£
a r 2 + hnwn

¤2
q 2 + [a + hnwn]2z2

vn + 1 =
[a + hnwn ]zq£

a r 2 + hnwn

¤2
q 2 + [a + hnwn ]2z2

wn + 1 =
q

1 ¡ e2v2
n + 1

hn + 1 =

s³
q ¡

aun + 1

wn + 1

2́

+

³
z ¡

a r 2vn + 1

wn + 1

2́

(5)

Final Step: Step 4
Compute k n + 1 =arctan(vn + 1 / un + 1) with a standard algorithm

that is stable near §90 deg.

Accuracy of the Three-Step Algorithm
With a single pass through the algorithm, n =0 and the � nal esti-

mates are k n + 1 = k 1 and hn + 1 =h1. Tracking the compounding of
all of the intermediateroundingerrorsfrom the InstituteofElectrical
and Electronics Engineers (IEEE) double precision binary � oating-
point arithmetic consists of straightforward but lengthy algebraic
inequalities;the generalmethod and many examples relevant to our
algorithm are presented in the literature.5 The result shows that the
computedvalues of k 1 and h1 have the followingaccuracy,valid for
all nonnegative altitudes:

j k ¡ k 1 j <

»
2.2 £ 10 ¡ 6 deg for Earth

8.5 £ 10 ¡ 2 deg for Saturn
(6)

j h ¡ h1 j <

»
8.2 £ 10 ¡ 4 m for Earth

1.2 £ 10+4 m for Saturn
(7)

Subsequent iterations converge with the following accuracy:

j k ¡ k n + 1j · j k ¡ k 1j £ j n
` j h ¡ hn + 1j · j k ¡ k n + 1j £ a / r (8)

with the dimensionless contraction constant

j ` =

»
1 +

³
r +

e2

2r 3

´
e2

1 + r

¼
e2

2r 2
<

»
3.4 £ 10 ¡ 3 for Earth

1.5 £ 10 ¡ 1 for Saturn
(9)

The realizationof such a greater accuracy would require computers
with more binary digits than IEEE double precision.Therefore, we
have not carried out the analysis of rounding errors past the � rst
iteration.

Accuracy of the Initial Values
In this section we compute bounds on the errors j h ¡ h0 j and

j k ¡ k 0 j . We assume that 0 ·h ·a r 2 b e( k ) and that k < 90 deg.
(The validity of the algorithm when k =90 deg is obvious.) The
derivationof Eqs. (3) and (4) for h0, u0 , and v0 appears in textbooks,1

and so we omit the details. For k 0 we use u , the geodetic latitude of
P. From the de� nition of P in the Nomenclature we obtain

P =
1p

( q / a)2 + (z /b)2

³
q

z

´
(10)

The point on closest to X is C( k ). The unit normal vector at C( k )
is [cos( k ), sin( k )], and

C( k ) =
a

b e( k )

³
cos( k )

r 2 sin( k )

´
(11)

From Eq. (1) it follows that

tan( k ) =
sin( k )

cos( k )
=

1 + [h b e( k ) /a]
r 2 + [h b e( k ) /a]

¢
z

q
(12)

or

k = arctan

»
1 + [h b e( k )/ a]

r 2 + [h b e( k ) /a]
¢

z

q

¼
(13)

Now P =cX for a constant c, and P =C( u ) =[a / b e( u )] [cos( u ),
r 2 sin( u )]. Therefore, tan( u ) =z / r 2 q . For ¡ r 2 < t we write

R(t ) = (1 + t ) / ( r 2 + t ) ¢ z / q (14)

so that k =arctan{R[h b e( k ) /a]} and u =arctan[R(0)]. By the
mean-value theorem for derivatives applied to the function arctan
(and the fact that R is strictlydecreasing), if ¡ r 2 < t2 ·t1 then there
is a number t3 between t2 and t1 such that

arctan[R(t2)] ¡ arctan[R(t1)] = [R(t2) ¡ R(t1)] arctan0 [R(t3)]

= [R(t2) ¡ R(t1)]
©
1 ê 1 + [R(t3)]2

ª
(15)

Because R decreases and ¡ r 2 < t2 ·t3 ·t1 , we obtain

0 ·arctan[R(t2)] ¡ arctan[R(t1)]

·[R(t2) ¡ R(t1)]
©
1 ê 1 + [R(t1)]2

ª
(16)

or

arctan[R(t2)] ¡ arctan[R(t1)]

·

¡
r 2 + t1

¢
(z / q )

¡
r 2 + t1

¢2
+ (1 + t1)2(z / q )2

(1 ¡ r 2)(t1 ¡ t2)¡
r 2 + t2

¢ (17)

The � rst term on the right is of the form A f / ( A2 + B2 f 2) with
f =z / q , A = ( r 2 + t1), and B = (1 + t1), and calculus shows that
its maximum is 1/ (2B). This maximum means that

arctan[R(t2)] ¡ arctan[R(t1)] · e2 ê
£
2
¡
r 2 + t2

¢¤
(t1 ¡ t2) / (1 + t1)

(18)
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Fig. 2 Auxiliary concepts to facilitate the derivations.

We set t1 =h b e( k ) / a and t2 =0 and use 0 ·h ·a r 2 b e( k ) to obtain

0 · k 0 ¡ k = u ¡ k ·
h b e( k ) /a

1 + h b e( k ) /a
e2

2r 2
·

e2

2
(19)

We use a similar method to bound the error in h0. We write
C( a ) for the point on the ellipse with geodetic latitude a , and
H ( a ) = k C( a ) ¡ X k . The mean-value theorem applied to H gives
j H ( k ) ¡ H ( k 0) j = j ( k ¡ k 0)H 0 ( a ) j for some a with k < a < u . If X
is on the surface, then h0 =0 =h. Otherwise H ( a ) 6= 0, and (with ¢
denoting the dot product) we � nd successively that

[H ( a )]2 = k C( a ) ¡ X k 2

H 0 ( a ) =
[C( a ) ¡ X] ¢ C 0 ( a )

k C( a ) ¡ X k
= k C 0 ( a ) k cos[h ( a )] (20)

where h ( a ) denotes the angle between the derivative C 0 ( a ) and
C( a ) ¡ X.

Figure 2 shows that 0 < cos[h ( a )] < cos[h ( u )] when k < a < u .
From the triangle with vertices O, P, and Q we � nd that h ( u ) =
( p / 2) ¡ ( u ¡ l ), where l is the geocentric latitude of P. Hence,

0 · cos[h ( a )] < cos[h ( u )]

= sin( u ¡ l )

< u ¡ l

= arctan[(1/ r 2) tan( l )] ¡ arctan[tan( l )] (21)

We use the mean-value theorem again to obtain

j cos[h ( a )]j < 1/ (1 + t 2)[(1/ r 2) ¡ 1] tan( l ) (22)

for some t with tan( l ) < t < tan( l )/ r 2. Then t / (1 + t 2) · 1
2 yields

j cos[h ( a )]j < t / (1 + t 2) ¢ e2 / r 2 · e2 / 2r 2 (23)

and then j C 0 ( a ) j =a r 2 / [b e( a )]3 ·a / r gives j H 0 ( a ) j ·ae2 / (2 r 3).
Therefore,

j h ¡ h0 j = j H ( k ) ¡ H ( k 0) j = j k ¡ k 0 j j H 0 ( a ) j · ae4 / 4r 3 (24)

Contracting Map
Compared to methods such as truncated in� nite expansions,con-

tracting maps offer the advantage of automatic corrections, with
iterations converging to the � xed point regardless of the initial ap-
proximationand, hence, regardlessof intermediateerrors.Newton’s
method iterates a contracting map, but for the current application
it involves canceling subtractions that are dif� cult to analyze. In
contrast, the contracting map presented here has known conver-
gence propertieswith sharp error bounds. The following derivation
demonstrates the method of proof in the case k · k n · u , which
is true for n =0 and 0 ·h ·a r 2 b e( k ), and which yields the error

bounds Eqs. (6) and (7) for k 1 and h1. We show that the function K
de� ned by

K ( k ) =arctan

³
1 + H ( k ) b e( k ) /a
r 2 + H ( k ) b e( k ) / a

¢
z

q

´

=arctan{R[H ( k ) b e( k ) /a]} (25)

is a contracting map, that is, that there exists a constant j with
0 · j < 1 suchthat j K ( k n ) ¡ K ( k ) j · j j k n ¡ k j . With t1 designating
the larger and t2 the smaller of H ( k n ) b e( k n) / a and H ( k ) b e( k ) / a,
Eq. (18) gives

j K ( k n ) ¡ K ( k ) j = j arctan{R[H ( k n ) b e( k n)]}

¡ arctan{R[H ( k ) b e( k )]}j

·
£
e2 ê 2a

¡
r 2 + t2

¢
(1 + t1)

¤
j H ( k n) b e( k n )

¡ H ( k ) b e( k ) j

=
£
e2 ê 2a

¡
r 2 + t2

¢
(1 + t1)

¤
j k n ¡ k j j (Hb e)

0 ( a ) j (26)

for some a between k n and k , where we have applied the mean-
value theorem again to the product Hb e . Calculus shows that
j b e

0 j · (e2 / r 2) b e , and previous estimates give

j (Hb e)
0 ( a ) j · j H 0 ( a ) b e( a ) j + j H ( a ) b e

0 ( a ) j

· j C 0 ( a ) cos[h ( a )]b e( a ) j + (e2 / r 2) j H ( a ) b e( a ) j

= (e2 / 2r 2)êê a r 2ê [b e( a )]3 b e( a )êê + e2 / r 2 j H ( a ) b e( a ) j

· (ae2 / r 2)[1 + H ( a ) b e( a ) / a]

· (ae2 / r 2)[1 + t1] (27)

Combining these results in Eq. (26) gives

j K ( k n ) ¡ K ( k ) j · e2 ê 2
¡
r 2 + t2

¢
(e2 / r 2) j k n ¡ k j < e4 / 2r 4 j k n ¡ k j

(28)

It follows that K is a contracting map with contraction constant
j =e4 / 2r 4 provided this constant is less than 1, which holds
when e2 < 2 ¡

p
2. We have j k n ¡ k j · j n j k 0 ¡ k j and j hn ¡ h j ·

c j n j k 0 ¡ k j , where c =ae2 / 2 r 3 . The constants j (dimensionless)
and c satisfy

j <

»
2.3 £ 10 ¡ 5 for Earth

3.3 £ 10 ¡ 2 for Saturn

c <

»
2.2 £ 104 m/rad for Earth

8.6 £ 106 m/rad for Saturn
(29)

For n =0 this inequality means that j k 1 ¡ k j = j K ( k 0) ¡ K ( k ) j ·
j ¢ j k 0 ¡ k j and j h1 ¡ h j · c ¢ j ¢ j k 0 ¡ k j , which yields the error
bounds claimed in Eqs. (6) and (7).

Initial Values and Error Bounds for Other Cases
For negativealtitudes in the range ¡ a r 2 / (600b e) ·h < 0, which

correspondsto thegreatestdepth( ¡ 104 m)of all oceansonEarth,we
also use k 0 = u , but the contractionconstant j d is different.For high
altitudes h > a r 2 / b e( k ), the same initial value k 0 = u would work,
but we use a different initial value, k 0 = l , that reduces the error
by a factor of two; the contraction constant j h is also different (see
Table 1). For example, with a satellite on orbit at any altitudehigher
thanoneEarth radius,in particularforgeosynchronoussatellites,the
� rst row ofTable 1 shows that from the initial estimate k 0 = l one it-
eration of our algorithmstill yieldsa geodetic altitudeh1 accurate to
1 mm anda geodeticlatitude k 1 accurate to onemillionthof a degree.
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Table 1 Error bounds for various initial values ¸0 and altitude ranges

k 0 ha j k ¡ k 0 j j h ¡ h0 j j k ¡ k 1 j j h ¡ h1 j j k ¡ k n + 1 j j h ¡ hn + 1 j j b

l h` < h e2 /4 r 2 ae4 /8 r 5 e6 /[16(1 + r ) r 5] ae8 /[32(1 + r ) r 8] (e2 /4 r 2) j n + 1 (ae2 /2r 3)(e2 /4 r 2) j n + 1 j h
u 0 · h · h` e2 /2 ae2 /2 r 3 e6 /[4(1 + r 2) r 2] ae8 /[4(1 + r 2) r 3] [e6 /4(1 + r 2) r 2]j n (a / r )[e6 /4(1 + r 2) r 2]j n j `

u hd · h < 0 e2 /1198r ae2 /1198r (e2 /1198r ) j (a / r )(e2 /1198r ) j (e2 /1198r ) j n + 1 (a / r )(e2 /1198r ) j n + 1 j d

ah` = a r 2 / b e ( k ); hd = ¡ a r 2 /[600b e ( k )].
b j h = e4

4(1 + r ) r 3 <

n
5.7 £ 10 ¡ 6 for Earth
7.8 £ 10 ¡ 3 for Saturn

; see Eq. (9) for j .̀ j d =
e2

2
1 + (1/ r )[1 + e2 K /2(1 ¡ K )](e2 /1 + r )

(1 ¡ K r 2 ){r 2 ¡ [K r 2 + e2 K /2r (1 ¡ K )]}
<

n
3.7 £ 10 ¡ 3 for Earth
1.5 £ 10 ¡ 1 for Saturn

Conclusion
From geocentric (Cartesian or cylindrical) coordinate data, our

algorithm uses a geocentric initial estimate and one iteration of a
contracting map to compute geodetic coordinates with a provable
accuracy with IEEE binary arithmetic.
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