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Nomenclature

a = equatorial radius of the planet, m

b = polar radius of the planet, m

C = section of the planet’s surface by a plane
containing the polar axis and X

C(o) = point on C with geodetic latitude a

e = eccentricity of the planet, e = /(1 — ¢°)
(dimensionless)

H(o) = distance from X to C(a), m

h = geodetic altitude of X, m

N = outward unit normal vector at P

(] = center of the oblate spheroidal planet

P = intersection of the planet’s surface and the line
through O and X

0 = intersection of the planet’s equator and the line
through P and X

X = pointin space whose geodetic coordinates
are to be computed

(x,¥,2) = Cartesian (geocentric) coordinates of X, m

B.() = auxiliary function, /{1 — e*[sin(a)]*}
(dimensionless)

0(ax) = angle between C'(@) and C(a) — X, deg

K = contraction constant (dimensionless)
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A = geodetic latitude of X, deg

u = geocentric latitude of X, that is, polar angle
of the Cartesian point (p, z), deg

P = polar radius of the Cartesian point (x, y),
Jx 4y, m

c = ratio of the polar and equatorialradii, c =b/a
(dimensionless)

] = geodetic latitude of P, deg

@ = longitude of X, that is, polar angle of the

Cartesian point (x, y), deg

Subscripts

d = negative altitudes (deep), h < 0

h = high altitudes (high), ac?/ B, (L) < h

£ = low altitudes (low), 0 <h <ac?/B,(1)

0,1,n,n+1 = number of iterations

Introduction

HIS Note presents a provably accurate algorithm to compute

the geodetic latitude and geodetic altitude of a point in space
relative to an oblate spheroid (a planet), given the geocentric posi-
tion of the point relative to the spheroid. This computation is often
necessary for navigation and tracking of aircraft, space vehicles,
or other objects. The measurements yield the geocentric Cartesian
coordinates (x, y, z) of the target X:

X=C>=

Equation (1) relates the cylindrical coordinates (p, z) to the geode-
tic coordinates (A, h) (Ref. 1) (Fig. 1). The problem consists of
computing the target’s geodetic altitute & and geodetic latitude 4
given x, y, z. This problem can be solved in closed form (contrary
to Deprit and Deprit-Bartholome?) because it reduces to solving a
quartic equation. However, a closed-form algebraic solution of the
quartic equationis impractical for numerical computations for three
reasons. First, it requires the computation of a complex cube root,
which itself involves a numerical approximation. Second, algebraic
solutions contain subtractionsthat can resultin catastrophic cancel-
lations of significant digits. Finally, because of the complexity of
the algebraic solutions, no practical upper bounds on the effects of
rounding errors, overflow, and underflow appear to exist. The lit-
erature contains various numerical approximations for the geodetic
coordinates; butapparently does not provide bounds on the errorsin
the presence of floating-pointarithmetic or other perturbations,nor
bounds on the number of iterations necessary to achieve a specified
accuracy.In one instance, an algorithm* published in this journal at-
tempts a division by zero above the poles and near the poles calls for
divisions by small numbers that would amplify previous rounding
or measurement errors.

In contrast, the algorithm presented here begins with a geocentric
approximation and refines it through one iteration of a contract-
ing map. The method is accurate to two-millionths of a degree for

[a/Be(2) + h]cos(A)

(D)
[ac?l B.(2) + h] sin(2)

P

o a
Fig. 1 Problem: given p and z for X, compute # and A.
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the geodetic latitude and 1 mm for the geodetic altitude. Further
iterations would yield still greater accuracy.

Earth Geodetic Coordinates of Close Objects

The main algorithmis for Earth and for satellites whose orbits are
at an altitude of the order of one Earth polar radius or less. Because
h is unknown, the inequalities 0 <h <b cannot be tested, but the
quantity ac?f3,(A) is approximately the polar radius b. Moreover,
0 <h <ac?B,(A) is algebraically equivalent to

(pla)* + (z/b)* =1 ={p*/[(1 + cD)al} + 2/4b* (2)

which can be calculated and tested from the data. The three-step
algorithm comprises a single pass of an iterative method. At each
pass the method computes an altitude estimate, estimates of the
cosine and sine of latitude, and an intermediate quantity 3,(1). The
inputs are the geocentric coordinates (x, y, z) of X.

Three-Step Algorithm
Step 1

Setn =0. Compute p = +/(x? + y?) and the initial altitude esti-
mate:

hy = [1 —1l Vipray + (z/b)2]¢p2 + 22 3)

Step 2
Compute the cosine, uy, = cos(¢), and sine, vy = sin(¢), of the
initial latitude estimate Ao = ¢ and the initial value wg of ,(4):

olp b4
Uy =———t——, Vo = ————, wo =+/1 — e2v?
[o*p? + 22 [o*p? + 22 0
4)
Step 3

Compute the cosine, u,, . |, and sine, v, ; |, of the improved lat-
itude estimate A4, + 1, the corresponding value w, ., of ., and the
improved altitude estimate /,, 4 | :

[acr2 + h,,w,,]p

Up+1 =

\/[acr2 + how, ] p? + la + hyw, P22
la + huwalz

\/[acr2 + how, ] p? + la + hyw, P22

Va+1 =

au : ac?y :
J— ( —$>+<z——"+l> 5)
Wyt Wyt
Final Step: Step 4

Compute A, | =arctan(v, + /u, + 1) with a standard algorithm
that is stable near +£90 deg.

Accuracy of the Three-Step Algorithm

With a single pass through the algorithm, n =0 and the final esti-
mates are A, + | =A; and h,, . | =h;. Tracking the compounding of
all of the intermediateroundingerrors from the Instituteof Electrical
and Electronics Engineers (IEEE) double precision binary floating-
point arithmetic consists of straightforward but lengthy algebraic
inequalities;the general method and many examplesrelevant to our
algorithm are presented in the literature’ The result shows that the
computed values of A; and /1, have the following accuracy, valid for
all nonnegative altitudes:

2.2 X 1076 deg for Earth

6
8.5 X 1072 deg for ©

M—ll|<{

Saturn

h— | 8.2 xX10™*m for Earth o
—-hl <
: 1.2 X10**m for Saturn

Subsequent iterations converge with the following accuracy:

A= 2l 12— A X1 |h=hy ol |2 =241l Xalo (8)

with the dimensionless contraction constant

2\ & &2 3.4 x107* for Earth
ke =31 +|oc+ — — <
26%)1+ o] 252 1.5 X107! for Saturn
©
The realization of such a greater accuracy would require computers
with more binary digits than IEEE double precision. Therefore, we

have not carried out the analysis of rounding errors past the first
iteration.

Accuracy of the Initial Values

In this section we compute bounds on the errors |h — hy| and
[A = 26]. We assume that 0 <h <ac?B,(A) and that 1< 90 deg.
(The validity of the algorithm when 2 =90 deg is obvious.) The
derivationof Eqs. (3) and (4) for h, uy, and vy appearsin textbooks,!
and so we omit the details. For Ay we use ¢, the geodetic latitude of
P. From the definition of P in the Nomenclature we obtain

Po p) (10)
V(pla)? + (z/b)* \*

The point on C closest to X is C(L). The unit normal vector at C(A)
is [cos(A), sin(A4)], and

a cos(A)
@ = B.(2) (crz sin(/l)) (n

From Eq. (1) it follows that

sin(A) _ 1+ [hB.(AM)/a] z

wn(h) =) T * hp.(al » (12)
or
_ 1+ [hB.(M)/a] z
A —arctan{—sz B /a] p} (13)

Now P =cX for a constant ¢, and P =C(¢) =[a/B.(¢)] [cos(p),
o? sin(¢)]. Therefore, tan(¢) =z/ c>p. For —c” < t we write

R(t) =(1+0)/(c*+1)-zlp (14)

so that A =arctan{R[hf,(A)/a]} and ¢ =arctan[R(0)]. By the
mean-value theorem for derivatives applied to the function arctan
(and the fact that R is strictly decreasing), if —c? < £, <t, then there
is a number #; between £, and #; such that

arctan[R(%,)] — arctan[R(t;)] =[R(z,) — R(t;)] arctan’[R(z3)]

=[R(t) — Rl 1+ (RGP} (15)
Because R decreasesand —o? < 1, <t; <t;, we obtain

0 <arctan[R(#,)] — arctan[R(#)]

<[R() = Rl 1+ [R(1)P) (16)
or

arctan[R(%,)] — arctan[R(¢;)]

- (> +1)/p) (1 =)t = 1) a7

T (e tn) ey (02 +0)

The first term on the right is of the form A{/(A? + B%£?) with
¢ =z/p, A=(c®>+1t),and B =(1 + 1), and calculus shows that
its maximum is 1/(2B). This maximum means that

arctan[R(%,)] — arctan[R(#)] 562| [2(02 + tz)](tl — 1)/ (1 +1)
(18)
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(o}

Fig. 2 Auxiliary concepts to facilitate the derivations.

Wesett; =hp.(A)/aandt, =0anduse 0 <h <ac?B,(A) to obtain

hB,(M)/la € e?
OSAU—A=¢—AS——S_
1+ hB.(A)/a20? 2

(19)
We use a similar method to bound the error in h,. We write
C(o) for the point on the ellipse with geodetic latitude o, and
H(a) =||C(a) — X||. The mean-value theorem applied to H gives
|H(X) — H(A)| =l(2 — Ag) H' ()| for some awith A< o< ¢. If X
is on the surface, then h, =0 =h. Otherwise H(a) A0, and (with -
denoting the dot product) we find successively that

[H@F =lIC(e) - XII*

. €@ -X1-C) .,
Hio == =[IC(a)llcos[0(x)]  (20)
where 6(a) denotes the angle between the derivative C'(a) and
Cla) —X.

Figure 2 shows that 0 < cos[0(a)] < cos[0(¢)] when A < o< ¢.
From the triangle with vertices O, P, and Q we find that 6(¢) =
(m/2) — (¢ — n), where u is the geocentric latitude of P. Hence,

0 <cos[8(a)] < cos[O(¢)]

=sin(¢ — u)
<¢-u
=arctan[(1/c?) tan(u)] — arctan[tan(u)] 21

We use the mean-value theorem again to obtain
[cos[O(en)]| < 1/(1 + tH)[(1/5?) — 1]tan(u) (22)
for some ¢ with tan(u) < ¢ < tan(u)/ o>. Thent/(1 + t%) s% yields
[cos[O(a)]| < t/(1 + £%) - €%/ o? <€*/25° (23)

andthen |C' ()| =ac?*/[B.() ] <alo gives|H'(a)| <ae?/(207).
Therefore,

lh = hol =|H(2) = H(20)| =12 = Xol|H'(a)| <ae'/4a’ (24)

Contracting Map

Compared to methods such as truncated infinite expansions, con-
tracting maps offer the advantage of automatic corrections, with
iterations converging to the fixed point regardless of the initial ap-
proximationand, hence, regardlessof intermediateerrors. Newton’s
method iterates a contracting map, but for the current application
it involves canceling subtractions that are difficult to analyze. In
contrast, the contracting map presented here has known conver-
gence properties with sharp error bounds. The following derivation
demonstrates the method of proof in the case A <A, <¢, which
is true for n =0 and 0 <h <ao?B,(1), and which yields the error

bounds Egs. (6) and (7) for A; and /. We show that the function A
defined by

A(Q) =arctan(lz'i'H(lM £>
o° + H(A)ﬂe(l)/a P

=arctan{R[H (1)B.(1)/al} 25)

is a contracting map, that is, that there exists a constant x with
0 <k < 1suchthat|A(4,) — A(A)| <k|A, — A|. With#, designating
the larger and f, the smaller of H(A,)B.(A,)/a and H(A)B.(A)/a,
Eq. (18) gives

|A(2) = A = larctan{RLH (4,) Be(2)])
— arctan{R[H (2) ()]}
<[l 2a(c® + )1 + 1)1 H () B(R)
— H(W)BW)
= [l 2a(c® + 1) (1 + 1] 12, = AlI(HB.)' () (26)

for some o between 4, and A, where we have applied the mean-
value theorem again to the product Hf,. Calculus shows that
|B.'| <(¢*/ 6*)B., and previous estimates give

[(HB.) ()] <|H'(o)Be()| + |H(e)B.' ()]
<IC'(@) cos[O(@)]B.()| + (¢*/ %) H (). ()]
= (/20" ao? (B e + &1 P H (@B
<(aé*/cH)[1 + H(a)B.(o)/al
<(ae’/oN)[1 + 1] 7

Combining these results in Eq. (26) gives

IA(L) =AW <€l 2(0? + 1) (€ oD)Ir, 4l < e*120%A, - 2l
28)

It follows that A is a contracting map with contraction constant
k =e*/20* provided this constant is less than 1, which holds
when ¢? <2 — /2. We have |1, — A| <«"|A — A| and |h, —h| <
y "4 — Al, where y =ae?/2c>. The constants x (dimensionless)
and y satisfy

{2.3><10-5 for  Earth
<

3.3 x1072 for Saturn

2.2 X 10* m/rad for Earth
y < (29)

8.6 X 10% m/rad for Saturn

For n =0 this inequality means that |1, — 4| =|A(X) — A(A)| <
kK -|Ag— 2l and |h; — h| <y -x - |4 — Al, which yields the error
bounds claimed in Eqgs. (6) and (7).

Initial Values and Error Bounds for Other Cases

For negative altitudes in the range —ac?/(60083,) <k < 0, which
correspondsto the greatestdepth (—10* m) of all oceans on Earth, we
alsouse Ay =¢, but the contractionconstant ; is different. For high
altitudes & > ac?/ B,(A), the same initial value 1, =¢ would work,
but we use a different initial value, A, =pu, that reduces the error
by a factor of two; the contraction constant ;, is also different (see
Table 1). For example, with a satellite on orbit at any altitude higher
thanone Earth radius, in particularfor geosynchronoussatellites, the
firstrow of Table 1 shows that from the initial estimate A, =p one it-
eration of our algorithmsstill yields a geodetic altitude /; accurateto
1 mm and a geodeticlatitude A, accurateto one millionthof a degree.
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Table1 Error bounds for various initial values A and altitude ranges

2o h? |2 = Aol | = hol (A =2 | = hy] A= An 41l |h = hy 41l K®
u he< h e?/4c? ae*/8c° e0/[16(1 + 0)a]  aeb/[32(1 + 0)c®] (21462 +1 (ae?/253)(e* /4"t g
¢ 0L h<h /2 ae’/2c® /41 + a2)c?]  aeb/[4(1+ %)) [e974(1 + 62 I*  (alo)[e®/4(1 + 622" e
¢ hg<h<0 €*1198c ae*/1198c (€%/11980)x (alo)(e?/11980)k  (€?/11980) k" *! (al o) (e?/1198c) K" * 1 Ky

the = ac?lBe(A); ha =—ac?[600B.(1)].

-6 §
b oA 5.7 X 10 for Earth - see Bq. (9) for kp. Ky = =

e 1+ (1/o)[1+K/2(1 — K))(e*/1+ o)

AT 7.8 1073 for Satum

Conclusion
From geocentric (Cartesian or cylindrical) coordinate data, our
algorithm uses a geocentric initial estimate and one iteration of a
contracting map to compute geodetic coordinates with a provable
accuracy with IEEE binary arithmetic.
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